A Case Study of the Mechanism of Alcohol-Mediated Morita Baylis–Hillman Reactions. The Importance of Experimental Observations

نویسندگان

  • R. Erik Plata
  • Daniel A. Singleton
چکیده

The mechanism of the Morita Baylis-Hillman reaction has been heavily studied in the literature, and a long series of computational studies have defined complete theoretical energy profiles in these reactions. We employ here a combination of mechanistic probes, including the observation of intermediates, the independent generation and partitioning of intermediates, thermodynamic and kinetic measurements on the main reaction and side reactions, isotopic incorporation from solvent, and kinetic isotope effects, to define the mechanism and an experimental mechanistic free-energy profile for a prototypical Morita Baylis-Hillman reaction in methanol. The results are then used to critically evaluate the ability of computations to predict the mechanism. The most notable prediction of the many computational studies, that of a proton-shuttle pathway, is refuted in favor of a simple but computationally intractable acid-base mechanism. Computational predictions vary vastly, and it is not clear that any significant accurate information that was not already apparent from experiment could have been garnered from computations. With care, entropy calculations are only a minor contributor to the larger computational error, while literature entropy-correction processes lead to absurd free-energy predictions. The computations aid in interpreting observations but fail utterly as a replacement for experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Et3N/H2O: A green and inexpensive organocatalytic medium for efficient Baylis-Hillman reaction

A new organocatalyzed method is developed for Baylis–Hillman reactions of cyclohex-2-enone with various aromatic aldehydes in the presence of water and catalytic quantities of triethylamine. All reactions take place at room temperature and relatively good yields of various products are obtained within a time frame which does not exceed 24 hours. The mild reaction conditions used in the present ...

متن کامل

Enantioselective, organocatalytic Morita-Baylis-Hillman and Aza-Morita-Baylis-Hillman reactions: stereochemical issues.

Conscious of the importance that stereochemical issues may have on the design of efficient organocatalyts for both Morita-Baylis-Hillman and aza-Morita-Baylis-Hillman reaction we have analyzed them in this minireview. The so-called standard reactions involve "naked" enolates which therefore should lead to the syn adducts as the major products, irrespective of the E, Z stereochemistry of the eno...

متن کامل

Et3N/H2O: A green and inexpensive organocatalytic medium for efficient Baylis-Hillman reaction

A new organocatalyzed method is developed for Baylis–Hillman reactions of cyclohex-2-enone with various aromatic aldehydes in the presence of water and catalytic quantities of triethylamine. All reactions take place at room temperature and relatively good yields of various products are obtained within a time frame which does not exceed 24 hours. The mild reaction conditions used in the present ...

متن کامل

[Development of acid-base organocatalysts for enantioselective aza-Morita-Baylis-Hillman (aza-MBH) reactions via dual activation mechanism].

This review describes our recent efforts in the development of acid-base organocatalysts, (S)-3-(N-isopropyl-N-3-pyridinylaminomethyl) BINOL (6a) and (S)-3-[2-(diphenylphosphino)phenyl] BINOL (13a), with dual activation mechanism for the aza-Morita-Baylis-Hillman (aza-MBH) reaction. In these catalysts, chiral Brønsted acid units are connected with a Lewis base unit via a spacer. The acid-base m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2015